

$\frac{d}{dx}(uv) = $ 2.5	(Front)	$\frac{d}{dx}\sqrt{u} =$	2.24 (Front)
$\frac{d}{dx}\left(\frac{u}{v}\right) = $	(Front)	$\frac{d}{dx} u =$	2.25 (Front)
$\left(f^{-1}\right)'(x) = $	(Front)	$\frac{d}{dx}\sin u =$ 1.3(a)	2.8 (Front)
$\frac{d}{dx} f(g(x)) =$ Oscillating Discontinuity 2.8	(Front)	$\frac{d}{dx}\cos u =$	2.9 (Front)
$\frac{d}{dx}\ln u =$	0 (Front)	$\frac{d}{dx}\tan u =$	2.10 (Front)
$\frac{d}{dx}\log_a u =$	1 (Front)	$\frac{d}{dx}\cot u =$	2.11 (Front)
$\frac{d}{dx}e^{u} =$	2 (Front)	$\frac{d}{dx}\sec u =$	2.12 (Front)
$\frac{d}{dx}a^{u} =$	3 (Front)	$\frac{d}{dx}\csc u =$	2.13 (Front)

$\frac{d}{dx}\sqrt{u} = \frac{1}{2\sqrt{u}}\frac{du}{dx}$ 2.24 (Back)	$\frac{d}{dx}(uv) = v\frac{d}{dx}u + u\frac{d}{dx}v(\text{Product})$ 1.1(a) 2.5 (Back)
$\frac{d}{dx} u = \frac{u}{ u }\frac{du}{dx}$ 2.25 (Back)	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{d}{dx}u - u\frac{d}{dx}v}{v^2} $ (Quotient) 2.6 (Back)
$\frac{d}{dx}\sin u = \cos u \frac{du}{dx}$ 2.8 (Back)	$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} (Inverse)$ 2.7 (Back)
$\frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$ 2.9 (Back)	$\frac{d}{dx}f(g(x)) = \frac{d}{dx}f(u) \cdot \frac{d}{dx}g(x)$ where $u = g(x)$ (Quotient) 2.8 (Back)
$\frac{d}{dx}\tan u = \sec^2 u \frac{du}{dx}$ 2.10 (Back)	$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}$ 2.20 (Back)
$\frac{d}{dx}\cot u = -\csc^2 u \frac{du}{\frac{1}{2.11 \text{ (Back)}}}$	$\frac{d}{dx}\log_a u = \frac{1}{u\ln a} \frac{du}{dx}$ 2.21 (Back)
$\frac{d}{dx}\sec u = \sec u \tan u \frac{du}{dx}$ 2.12 (Back)	$\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$ 2.22 (Back)
$\frac{d}{dx}\csc u = -\csc u \cot u \frac{du}{dx}$ 2.13 (Back)	$\frac{d}{dx}a^{u} = a^{u} \ln a \frac{du}{dx}$ 2.23 (Back)

$\frac{d}{dx}\sin^{-1}u = 2.14 \text{ (Front)}$	2.26 (Front)
$\frac{d}{dx}\cos^{-1}u =$ 2.15 (Front)	2.27 (Front)
$\frac{d}{dx}\tan^{-1}u =$ 2.16 (Front)	2.28 (Front)
$\frac{d}{dx}\cot^{-1}u =$ 2.17 (Front)	2.29 (Front)
$\frac{d}{dx} \sec^{-1} u =$ 2.18 (Front)	$\int x^n dx =$ 3.1 (Front)
$\frac{d}{dx}\csc^{-1}u =$ 2.19 (Front)	$\int \frac{1}{x} dx =$ 3.2 (Front)
Mean Value Theorem: 2.30 (Front)	$\int \frac{1}{ax+b} dx$ 3.3 (Front)
Rolle's Theorem: 2.31 (Front)	$\int e^{kx} dx =$ 3.4 (Front)

$\int a^x dx =$	3.5 (Front)	2.34 (Front) Limit Definition $f'(x) \approx 1$	efinition of the de $f'(a) =$	erivative
$\int \sin kx dx =$	3.6 (Front)	=		2.35 (Front)
$\int \cos kx dx =$	3.7 (Front)		\mathbf{LRAM}_n	3.11 (Front)
$\int \sec x \tan x dx$	= 3.8 (Front)		\mathbf{RRAM}_n	3.12 (Front)
$\int \sec^2 x dx =$	3.9 (Front)		\mathbf{MRAM}_n	3.13 (Front)
$\int \csc x \cot x dx$	3.10 (Front)	Trapezoi	d Rule with n re	3.14 (Front) ectangles
Intermediate Value Theo	rem (IVT):	Avera	ge Value of f o	n (a,b) 3.15 (Front)
Limit Definition of the de $f'(x) =$	rivative 2.33 (Front)	FTC	C I:	or

$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$	$\int a^x dx = \frac{a^u}{\ln a} + C$ 1.1(a) 3.5 (Back)
$f'(x) \approx$ Average rate of change = Slope of Secant line = $\frac{f(b) - f(a)}{b - a}$ 2.35 (Back)	$\int \sin kx dx = -\frac{\cos kx}{k} + C$ 3.6 (Back)
LRAM _n = $w(f(x_1) + f(x_2) + + f(x_{n-1})) \text{ or}$ $w_1 f(x_1) + w_2 f(x_2) + + w_{n-1} f(x_{n-1})$	$\int \cos kx dx = \frac{\sin kx}{k} + C$ 3.7 (Back)
RRAM _n = $w(f(x_2) + f(x_3) + \dots + f(x_n)) \text{ or}$ $w_1 f(x_2) + w_2 f(x_2) + \dots + w_{n-1} f(x_n)$ 3.12 (Back)	$\int \sec x \tan x dx = \sec x + C$ 3.8 (Back)
	$\int \sec^2 x dx = \tan x + C$ 3.9 (Back)
$T_{n} = \frac{3.14 \text{ (Back)}}{\frac{w}{2} (y_{1} + 2y_{2} + \dots + 2y_{n-1} + y_{n}) \text{ or}}$ $\frac{1}{2} (w_{1} (y_{1} + y_{2}) + w_{2} (y_{2} + y_{3}) + \dots)$	$\int \csc x \cot x dx = -\csc x + C$ 3.10 (Back)
Average Value of f on (a,b) $av(f) = f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$ 3.15 (Back)	Intermediate Value Theorem. If f is cont on $[a,b]$ and $d \in [f(a), f(b)]$ then there is a $c \in [a,b]$ st $f(c) = d$ 2.32 (Back)
b	Limit Definition of the derivative

FTC I:
$$\int_{a}^{b} f(x) dx = F(b) - F(a) \text{ or}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
3.16 (Back)

Limit Definition of the derivative
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
2.33 (Back)

FTC II:	3.17 (Front)	[Displacement	: 4.6 (Front)
Integration by Part	S			
Use to select <i>u</i>		Distance		
	3.18 (Front)			4.7 (Front)
Integration by substitution		Velocity:		
	3.19 (Front)			4.8 (Front)
Derivative of f at	4.1 (Front)		Speed	4.9 (Front)
Critical Number <i>c</i>		Acceleration 4.10 (Front)		
First Derivative Tes	4.3 (Front)	11. Given initial po	osition $s(a) = C$ the	e final position is 4.11 (Front)
Concavity Test	4.4 (Front)	$\frac{\text{Reciprocal}}{\sin x = \cos x =}$ $\cos x = \sec x =$ $\tan x = \cot x =$		Pythagorean $= 1$ $\tan^{2} x + 1 =$ $\cot^{2} x + 1 =$ 5.1 (Front)
Point of Inflection a	t <i>c</i> 4.5 (Front)	SINE GRAPH	COSINE GRAPH	-cosix - +

Displacement: A Vector quantity that represents the net change in position

$$s(t) = x(b) - x(a) = \int_{a}^{b} v(t)$$
4.6 (Back)

Distance: A scalar quantity that represents total movement regardless of sign

$$d(t) = |x(b) - x(a)| = \int_{a}^{b} |v(t)| dt$$
4.7 (Back)

Velocity: A Vector quantity that represents the rate of change of position

$$v(t) = s'(t)$$

4.8 (Back)

FTC II:
$$i$$
) $\int_{a}^{x} f(t) dt = F(x)$ ii) $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$

$$iii) \frac{d}{dx} \int_{h(x)}^{g(x)} f(t) dt = f(g(x)) \cdot g'(x) - h(g(x)) \cdot h'(x)$$
3.17 (Back)

Integration by parts:

$$\int v du = uv - \int v du$$

3.18 (Back)

$$\int f(g(x))g'(x) = \int f(u)du$$

3.19 (Back)

Speed: A scalar quantity that represents the rate of covering distance

Speed =
$$|v(t)|$$

4.9 (Back)

The instantaneous rate of change of the function at α or the slope of the tangent line at α

$$f'(a) = \frac{df}{dx}\Big|_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

4.1 (Back)

Acceleration: A vector quantity that represents the rate of change of velocity

$$a(t) = v'(t) = s''(t)$$

4.10 (Back)

A number c in an open (a,b) interval where the derivative is zero or does not exist

$$c \in (a,b)$$
 where

$$f'(c) = 0 \text{ or } f'(c) \text{ DNE}$$

4.2 (Back)

Given initial position s(a) = C the final position is

given by
$$s(b) = s(a) + \int_a^b s'(t) dt$$

4.11 (Back)

a) If the first derivative changes from negative to positive at c then the function has a relative minimum at c

b) If the first derivative changes from positive to negative at c then the function has a relative maximum at c

4.3 (Back)

Reciprocal

Quotient

Pythagorean $\sin^2 x + \cos^2 x = 1$

$$\tan^2 x + 1 = \sec^2 x$$

$$\cot^2 x + 1 = \csc^2 x$$

5.1 (Back)

- a) If the second derivative is positive on an interval I then the function is Concave Up on I
- b) If the second derivative is negative on an interval I the function is Concave down on I

4.4 (Back)

f: Is a point where the concavity of f changes f': Is a point where f' changes from increasing to decreasing or decreasing to increasing f': Is a point where f'' changes from positive to negative or negative to positive f